
Deep Whole-Body Control: Learning a Unified Policy
for Manipulation and Locomotion

Zipeng Fu*† Xuxin Cheng* Deepak Pathak
Carnegie Mellon University

Figure 1: We present a framework for whole-body control of a legged robot with a robot arm attached. Left
half shows how whole-body control achieves larger workspace by leg bending and stretching. Right half shows
different real-world tasks, including wiping whiteboard, picking up a cup, pressing door-open buttons, placing,
throwing a cup into a garbage bin and picking in clustered environments. Videos are here.

Abstract: An attached arm can significantly increase the applicability of legged
robots to several mobile manipulation tasks that are not possible for the wheeled or
tracked counterparts. The standard hierarchical control pipeline for such legged
manipulators is to decouple the controller into that of manipulation and locomotion.
However, this is ineffective. It requires immense engineering to support coordina-
tion between the arm and legs, and error can propagate across modules causing
non-smooth unnatural motions. It is also biological implausible given evidence for
strong motor synergies across limbs. In this work, we propose to learn a unified
policy for whole-body control of a legged manipulator using reinforcement learn-
ing. We propose Regularized Online Adaptation to bridge the Sim2Real gap for
high-DoF control, and Advantage Mixing exploiting the causal dependency in the
action space to overcome local minima during training the whole-body system. We
also present a simple design for a low-cost legged manipulator, and find that our
unified policy can demonstrate dynamic and agile behaviors across several task
setups. Videos are at https://maniploco.github.io

Keywords: Mobile Manipulation, Whole-Body Control, Legged Locomotion

1 Introduction
Locomotion has seen impressive performance in the last decade with results in challenging outdoor
and indoor terrains, otherwise unreachable by their wheeled or tracked counterparts. However,
there are strong limitations to what a legged-only robot can achieve since, besides visual inspection,
even the most basic everyday tasks require some form of manipulation. This has led to immense
progress in general-purpose legged manipulators primarily achieved through physical modeling of
dynamics [1, 2, 3, 4, 5, 6]. However, modeling a legged robot with attached arm is a dynamic,
high-DoF, and non-smooth control problem, requiring substantial domain expertise and engineering
effort on the part of the designer. The control frameworks are often hierarchical with simplified

*equal contribution, †Zipeng Fu is now at Stanford University

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://maniploco.github.io
https://maniploco.github.io

Body Mass,

End-Effector Mass
CoM, Friction,

Arm Strength,
Leg Strength

()et

Adaptation Module
()ϕ

Privileged Info Encoder
()μ

Regularize Supervise

Unified

Policy

()π

st, at−1 aarm
t

aleg
t

Manipulation

Advantage

Function

Amanip

Locomotion

Advantage

Function

Aloco

(A) Training in Simulation

(B) Deployment in Real World

Adaptation Module ()ϕ

st, at−1
Unified Policy ()π

50Hz

50Hz

aarm
t

aleg
t

Env Extrinsics (zt)

Teleoperation Vision Demonstrations

sarm
t−10, sleg

t−10, sbase
t−10, at−11

sarm
t−1 , sleg

t−1, sbase
t−1 , at−2

sarm
t−10, sleg

t−10, sbase
t−10, at−11

sarm
t−1 , sleg

t−1, sbase
t−1 , at−2

commands

Figure 2: Whole-body control framework. During training, a unified policy is learned by conditioned on
environment extrinsics. During deployment, the adaptation module is reused without any real-world fine-tuning.
The robot can be commanded in various modes including teleoperation, vision and demonstration replay.

models at higher levels [7], thus limited to operating in constrained settings. Hence, there has been
increasing interest in approaching this problem via reinforcement learning (RL) which could help
lower the engineering burden while being able to generalize to diverse scenarios.

However, recent learning-based approaches for legged mobile manipulators [8] have also followed
their model-based counterparts [9, 10] by using hierarchical models in a semi-coupled fashion to
control the legs and arm. This is ineffective due to several practical reasons including lack of
coordination between the arm and legs, error propagation across modules, and slow, non-smooth
and unnatural motions. Furthermore, it is far from the whole-body motor control in humans where
studies suggest strong coordination among limbs. In fact, the control of hands and legs is so tied
together that they form low-dimension synergies, as outlined over 70 years ago in a seminal series
of writings by Russian physiologist Nikolai Bernstein [11, 12, 13]. Perhaps the simplest example
is how it is hard for humans to move one arm and the corresponding leg in different motions while
standing. The whole-body control should not only allow coordination but also extend the capabilities
of the individual parts. For instance, our robot bends or stretches its legs with the movement of the
arm to extend the reach of the end-effector as shown in Figure 1.

Unlike legged locomotion, it is not straightforward to scale the standard RL paradigm of training the
policies in simulation and then transfer to the real world due to several challenges with whole-body
control. (a) High-DoF control: Our robot shown in Figure 3 has total 19 degrees of freedom. This
problem is exacerbated in legged manipulators because the control is dynamic, continuous and
high-frequency, which leads to an exponentially large search space even in few seconds of trajectory.
(b) Conflicting objectives and local minima: Consider when the arm tilts to the right, the robot needs
to change the walking gait to account for the weight balance. This curbs the locomotion abilities and
makes training prone to learn only one mode (manipulation or locomotion) well. (c) Dependency:
Consider picking an object on the ground, the end-effector of the arm needs support from the torso by
bending legs. This means the absolute performance of manipulation is bounded until legs can adapt.

In this work, we present both a hardware setup for customized low-cost fully untethered legged
manipulators and a method for learning one unified policy to control and coordinate both legs and arm,
which is compatible with diverse operating modes as shown in Figure 1. We use our unified policy
for whole-body control, i.e. to control the joints of the quadruped legs as well as the manipulator
to simultaneously take the arm end-effector to desired poses and command the quadruped to move
in desired velocities. The key insights of the method are that we can exploit the causal structure in
action space with respect to manipulation and locomotion to stabilize and speed up learning, and

2

Command Following (rfollowing) Energy (renergy) Alive (ralive)
rmanip 0.5 · e−∥[p,o]−[pcmd,ocmd]∥1 −0.004 ·∑j∈arm joints |τj q̇j | 0

rloco −0.5 ·
∣∣vx − vcmd

x

∣∣+ 0.15 · e−|ωyaw−ωcmd
yaw | −0.00005 ·∑i∈leg joints |τiq̇i|

2
0.2 + 0.5 · vcmd

x

Table 1: Both manipulation and locomotion rewards follow: rfollowing + renergy + ralive, which encourages
command following while penalizes positive mechanical energy consumption to enable smooth motion [17].
Denote forward base linear velocity vx, yaw angular base velocity ωyaw, torque τ , joint angle velocity q̇.

adding regularization to domain adaptation bridges the gap between simulation with full states and
real world with only partial observations.

We perform evaluation on our proposed legged manipulator. Despite immense progress, there exists
no easy-to-use legged manipulator for academic labs. Most publicized robot is Spot Arm from Boston
Dynamics [14], but the robot comes with pre-designed controllers that cannot be changed. Another
example is the ANYmal robot with a custom arm [8] from ANYBotics. Notably, both these hardware
setups are expensive (more than 100K USD). We implement a simple design of low-cost legged Go1
robot [15] with low-cost arm on top (hardware costs 6K USD). Our legged manipulator can run fully
untethered with modest on-board compute. We show the effectiveness of our learned whole-body
controller for teleoperation, vision-guided control as well as open-loop control setup across tasks
such as picking objects, throwing garbage, pressing buttons on walls etc. Our robot exhibits dynamic
and agile leg-arm coordinated motions as shown in videos at https://maniploco.github.io.

2 Method: A Unified Policy for Coordinated Manipulation and Locomotion

We formulate the unified policy π as one neural network where the inputs are current base state
sbase
t ∈ R5 (row, pitch, and base angular velocities), arm state sarm

t ∈ R12 (joint position and
velocity of each arm joint), leg state sleg

t ∈ R28 (joint position and velocity of each leg joint, and
foot contact indicators), last action at−1 ∈ R18, end-effector position and orientation command
[pcmd, ocmd] ∈ SE(3), base velocity command [vcmd

x , ωcmd
yaw], and environment extrinsics zt ∈ R20

(details in Section 2.2). The policy outputs target arm joint position aarm
t ∈ R6 and target leg joint

position aleg
t ∈ R12, which are subsequently converted to torques using PD controllers. We use

joint-space position control for both legs and the arm. As opposed to operational space control of the
arm, joint-space control enables learning to avoid self-collision and smaller Sim-to-Real gap, which is
also found to be useful in other setups involving multiple robot parts, like bimanual manipulation [16].

Command Vars Training Ranges Test Ranges
vcmd
x [0, 0.9] [0.8, 1.0]

ωcmd
yaw [-1,0, 1.0] [-1, -.7] & [.7, 1]
l [0.2, 0.7] [0.6, 0.8]
p [−2π/5, 2π/5] [−2π/5, 2π/5]
y [−3π/5, 3π/5] [−3π/5, 3π/5]

Ttraj [1, 3] [0.5, 1]

Table 2: Ranges for uniform sampling of
command variables

We use RL to train our policy π by maximizing the dis-
counted expected return Eπ

[∑T−1
t=0 γtrt

]
, where rt is the

reward at time step t, γ is the discount factor, and T is
the maximum episode length. The reward r is the sum of
manipulation reward rmanip and locomotion reward rloco

as shown in Table 1. Notice that we use the second power
of energy consumption at each leg joint to encourage both
lower average and lower variance across all leg joints. We
follow the simple reward design that encourages minimizing energy consumption from [17].

Env Params Training Ranges Test Ranges

Base Extra Payload [-0.5, 3.0] [5.0, 6.0]
End-Effector Payload [0, 0.1] [0.2, 0.3]
Center of Base Mass [-0.15, 0.15] [0.20, 0.20]
Arm Motor Strength [0.7, 1.3] [0.6, 1.4]
Leg Motor Strength [0.9, 1.1] [0.7, 1.3]

Friction [0.25, 1.75] [0.05, 2.5]

Table 3: Ranges for uniform sampling of
environment parameters

We parameterize the end-effector position command pcmd

in spherical coordinate (l, p, y), where l is the radius of the
sphere and p and y are the pitch and yaw angle. The origin
of the spherical coordinate system is set at the base of
the arm, but independent of torso’s height, row and pitch
(details in Supplementary). We set the end-effector pose
command pcmd by interpolating between the current end-
effector position p and a randomly sampled end-effector
position pend every Ttraj seconds:

pcmd
t =

t

Ttraj
p+

(
1− t

Ttraj

)
pend, t ∈ [0, Ttraj].

3

https://maniploco.github.io

pend is resampled if any pcmd
t leads to self-collision or collision with the ground. ocmd is uniformly

sampled from SO(3) space. Table 2 lists the ranges for sampling of all command variables.

2.1 Advantage Mixing for Policy Learning
Training a robust policy for a high-DoF robot is hard. In both manipulation and locomotion learning
literature, researchers have used curriculum learning to ease the learning process by gradually
increasing the difficulty of tasks so that the policy can learn to solve simple tasks first and then tackle
difficult tasks [18, 19, 20]. However, most of these works require many manual tunings of a diverse
set of the curriculum parameters and careful design of the mechanism for automatic curriculum.

Instead of introducing a large number of curricula on the learning and environment setups, we rely
on only one curriculum with only one parameter to expedite the policy learning. Since we know
that manipulation tasks are mostly related to the arm actions and locomotion tasks largely depends
on leg actions, we can formulate this inductive bias in policy optimization by mixing advantage
functions for manipulation and locomotion to speed up policy learning. Formally, for a policy with
diagonal Gaussian noise and a sampled transition batch D, the training objective with respect to
policy’s parameters θπ is

J(θπ) =
1

|D|
∑

(st,at)∈D

log π(aarm
t | st)

(
Amanip + βAloco)+ log π(aleg

t | st)
(
βAmanip +Aloco)

β is the curriculum parameter that linearly increases from 0 to 1 over timesteps Tmix: β =
min(t/Tmix, 1). Amanip and Aloco are advantage functions based on rmanip and rloco respectively.
Intuitively, the Advantage Mixing reduces the credit assignment complexity by first attributing differ-
ence in manipulation returns to arm actions and difference in locomotion returns to leg actions, and
then gradually anneal the weighted advantage sum to encourage learning arm and leg actions that
help locomotion and manipulation respectively. We optimize this RL objective by PPO [21].

2.2 Regularized Online Adaptation for Sim-to-Real Transfer
Much prior work on Sim-to-Real transfer utilize the two-phase teacher-student scheme to first train a
teacher network by RL using privileged information that is only available in simulation, and then the
student network using onboard observation history imitates the teacher policy either in explicit action
space or latent space [22, 23, 24, 25]. Due to the information gap between the full state available to
the teacher network and partial observability of onboard sensories, the teacher network may provide
supervision that is impossible for the student network to predict, resulting in a realizability gap. This
problem is also noted in Embodied Agent community [26]. In addition, the second phase can only
start after the convergence of the first phase, yielding extra burdens for both training and deployment.

To tackle the realizability gap and to remove the two-phase pipeline, we propose Regularized Online
Adaptation (shown in Figure 2). Concretely, the encoder µ takes the privileged information e as
input and predict an enviornment extrinsics latent zµ for the unified policy to adapt its behavior in
different environments. The adaptation module ϕ estimates the environment extrinsics latent zϕ by
only condition on recent observation history from robot’s onboard sensories. We jointly train µ with
the unified policy π end-to-end by RL and regularize zµ to avoid large deviation from zϕ estimated
by the adaptation module. The adaption module ϕ is trained by imitating zµ online. We formulate
the loss function of the whole learning pipeline with respect to policy’s parameters θπ, privileged
information encoder’s parameters θµ, and adaptation module’s parameters θϕ as

L(θπ, θµ, θϕ) = −J(θπ, θµ) + λ||zµ − sg[zϕ]||2 + ||sg[zµ]− zϕ||2 ,

where J(θπ, θµ) is the RL objective discussed in Section 2.1, sg[·] is the stop gradient oper-
ator, and λ is the Laguagrian multiplier acting as regularization strength. The loss function
can be minimized by using dual gradient descent: θπ, θµ ← argminθπ,θµ E(s,a)∼π(...,zµ)[L],
θϕ ← argminθϕ E(s,a)∼π(...,zϕ)[L], and λ← λ+α∂L

∂λ with step size α. This optimization process is
known to converge under mild conditions [27, 28]. In practice, we alternate the optimization process
of the unified policy π and encoder µ and the one of adaptation module ϕ by a fixed number of
gradient steps. λ increases from 0 to 1 by a fixed linear scheme. Notice that RMA [22] is a special
case of Regularized Online Adaptation, in which the Laguagrian multiplier λ is set to be constant zero
and the adaptation module ϕ starts training only after convergence of the policy π and the encoder µ.

4

Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓
Unified (Ours) 97.1± 0.61 1.00± 0.03 0.31± 0.03 0.63± 0.02 50± 0.90

Separate 92.0± 0.90 1.40± 0.04 0.43± 0.07 0.92± 0.10 51± 0.30
Uncoordinated 94.9± 0.61 1.03± 0.01 0.33± 0.01 0.73± 0.02 50± 0.28

Table 4: Comparison of unified policy with separate policies for legs-arm, and one uncoordinated policy. The
unified policy achieves the best performance given same energy consumption. The test ranges are in Table 2.

Deployment During deployment, the unified policy and adaptation module executes jointly onboard.
To specify commands, we develop three interfaces: teleopertion by joysticks, closed-loop control by
using RGB tracking, and open-loop reply of human demonstrations. Details are in Section 3.3.

3 Experimental Results
3.1 Robot System Setup

RGB Camera
Onboard

Compute &
Power

6DoF Arm

Go1
Quadruped

Rail
Mount

Figure 3: Robot system setup

The robot platform is comprised of a Unitree Go1 quadraped
[15] with 12 actuatable DoFs, and a robot arm which is the 6-
DoF Interbotix WidowX 250s [29] with a parallel gripper. We
mount the arm on top of the quadruped. The RealSense D435
provides RGB visual information and is mounted close to the
gripper of WidowX. Both power of Go1 and WidowX are
provided by Go1’s onboard battery. Neural network inference
is also done onboard of Go1. Our robot system uses only
onboard computation and power so it is fully untethered.

3.2 Simulation Experiments

The purpose of our simulation experiments is to address the following questions:

• Does the unified policy improves over separate policies for the arm and legs? If so, how?
• How Advantage Mixing helps learning the unified policy?
• What’s the performance of Regularized Online Adaptation compared with other Sim2Real methods?

Baselines and Metrics: We compare our method with the following baselines:

1. Separate policies for legs and the arm: one policy controls legs based on the quadraped observation,
and another policy controls the arm based on arm observation.

2. One uncoordinated policy: Same as unified policy which observes aggregate state of base, legs
and the arm, but only rmanip is used to train arm actions, and only rloco for leg actions.

3. Rapid Motor Adaptation (RMA) [22]: Two-phase teacher-student baseline.
4. Expert policy: the unified policy using the privileged information encoder zµ.
5. Domain Randomization: the unified policy trained without environment extrinsics z.

Arm workspace (m3) ↑ Survival under perturb ↑
Unified (Ours) 0.82± 0.02 0.87± 0.04

Separate 0.58± 0.10 0.64± 0.06
Uncoordinated 0.65± 0.02 0.77± 0.06

Table 5: In unified policy, legs help increase the arm
workspace and the arm helps the quadruped to stabilize.

We report following metrics: (1) survival per-
centage, (2) Base Accel: angular acceleration
of base, (3) Vel Error: L1 error between base
velocity commands and actual base velocity, (4)
EE Error: L1 error between end-effector (EE)
command and actual EE pose, (5) Tot. Energy:
total energy consumed by legs and the arm. All metrics are normalized by episode length. All
experiments are tested over 3 randomly initialized networks and 1000 episodes each. Details of
simulation and training are in Supplementary.

Improvements of the Unified Policy over Baselines: In Table 4, our unified policy outperforms
separate and uncoordinated policies because both the arm and leg actions are trained with the sum
of reward for manipulation and locomotion are given with observations for the arm, legs and the
quadraped base, while baselines struggle to maintain a small base acceleration, which results in larger
error in command velocity following and inaccurate EE pose following.

Unified Policy Increases Whole-body Coordination: Table 5 shows that our unified policy
promotes whole-body coordination where (1) leg actions will help the arm to achieve a larger

5

Realizability Gap
∥zµ − zϕ∥2

↓ Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓

Domain Randomization - 95.8± 0.2 0.44± 0.00 0.46± 0.00 0.40± 0.00 21.9± 0.53
RMA [22] 0.31± 0.01 95.2± 0.2 0.54± 0.02 0.44± 0.00 0.26± 0.04 27.3± 0.95
Regularized Online Adapt (Ours) 2e-4 ±0.00 97.4± 0.1 0.51± 0.02 0.39± 0.01 0.21± 0.00 25.9± 0.56

Expert w/ Reg. - 97.8± 0.2 0.52± 0.02 0.40± 0.01 0.21± 0.00 25.8± 0.49
Expert w/o Reg. - 98.3± 0.2 0.51± 0.02 0.39± 0.00 0.21± 0.00 25.6± 0.30

Table 6: Regularized Online Adaptation outperforms other baselines with the smallest imitation error which
helps it to have the same performance as the expert policy which uses privileged information to predict envi-
ronment extrinsics. Expert policy trained with regularization term ∥zµ − sg[zϕ]∥2 has negligible performance
degradation compared with the expert trained without regularization. Test ranges in Table 3. Domain Random-
ization learns to just stand in most cases, hence, trivially collapsing to low Tot. Energy and Base Accel.

workspace via bending for lower EE commands and standing up high for higher EE commands, and
(2) arm will help the robot balance under larger perturbation (1.0 m/s initial velocity of base) resulting
in higher survival rate of the unified policy. We estimate the the arm workspace via calculating
the volume of the convex hull of 1000 sampled EE poses, subtracted by the volume of a cube that
encloses the quadruped.

Figure 4: Advantage Mixing helps
the unified policy to learn to follow the
command velocity much faster (aggre-
gated Vel Error over episodes decreases
sharply) than without mixing.

Advantage Mixing Helps Learning the Unified Policy:
Without Advantage Mixing, the unified policy has difficulty in
credit assignment, resulting in the policy first learns EE com-
mand following but ignores the locomotion task. As shown
in Figure 4, Advantage Mixing helps the policy to focus on
each task first and then merge them together, which induces
a curriculum-like mechanism to speed up training. Details in
Supplementary.

Robust OOD Performance of Regularized Online Adapta-
tion: We find that our Regularized Online Adaptation is more
robust than RMA and Domain Randomization (DR), tested in
environments with out-of-distribution (OOD) environment pa-
rameters in Table 3. In RMA, it is not guaranteed the estimated
environment extrinsics by the adaptation module can imitates the one learned by the expert. With
Regularized Online Adaptation, the expert learns to predict environment extrinsics with regularization
from the adaptation module, thus tiny imitation error, resulting in 20% reduction in EE Error.
Table 6 shows that adding regularization to expert has negligible negative impact on performance,
while every metric gets improved compared to RMA due to smaller latent imitation error. Note that
DR has better base acceleration and total energy as it just stands in place under difficult environments.

3.3 Real-World Experiments
We use the built-in Go1 MPC controller and the IK solver for operational space control of WidowX as
the baseline in the real world, which we refer to as MPC+IK. More details are in the Supplementary.

Teleoperation: We specify EE position command pcmd
t by parameterizing pcmd

t+1 = pcmd
t + ∆p,

where ∆p = (∆l,∆p,∆y) is specified by two joysticks. With human in the loop, we can command
the end-effector to reach points within or outside of training distribution. In Figure 5, we analyze the
whole-body control in the real world, and show that the quadruped’s base rotation (rquad, pquad, yquad)
strongly correlates with the EE position command pcmd

t . This indicates that our unified policy enables
whole-body coordination where the leg joints, as well as the arm joints, help reaching.

Vision-Guided Tracking: In addition to joystick control by humans, we also show success-
ful picking tasks using visual feedback from an RGB camera. We mount a Realsense D435i
camera near the gripper of the arm and use AprilTag [30] to get the relative position be-
tween the gripper and the object to be picked up. AprilTag is a visual fiducial system pop-
ular in robotics research using simple 2D black and white blocks to encode pose informa-
tion. We first get the translation of the AprilTag in the camera frame ptag = [xtag, ytag, ztag]T .

6

(a) Body pitch pquad correlates with command
EE pitch p with various lengths l.

(b) Body pitch rquad correlates with command
EE pitch p with various yaws y.

Figure 5: Real-world whole-body control analysis. (a) We fix command EE yaw y = 0 and change command
EE pitch p and length l. When p has a large magnitude, the quadruped will pitch upward or downward to help
the arm reach for its goal. With larger l (goal far away), the quadruped will pitch more to help. (b) When the
magnitude of command EE yaw y is closer to 1.578 (arm turns to a side of the torso), the quadruped will roll
more to help the arm. When y = 0, the quadruped pitches downward instead of roll sideways to help the arm.

: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(a) Our method: success in both easy and hard
tasks with coordinated behaviors.

: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(b) MPC+IK: failure in both scenarios. Left: fail
due to missed cup. Right: fail due to self-collision.

Figure 6: Comparison of our method and the baseline controller (MPC+IK) in vision-guided pick-up tasks. We
sample different points around the robot as the target pick-up position. Easy tasks: 3 points are in normal distance
from the robot. Hard tasks: when the point is very close to the front feet and are hard to reach without whole-body
control. More hard tasks are in the Supplementary. Videos are at https://maniploco.github.io

Success
Rate ↑ TTC ↓ IK Failure

Rate ↓ Self-Collision
Rate ↓

Easy tasks (tested on 3 points)
Ours 0.8 5s - 0
MPC+IK 0.3 17s 0.4 0.3

Hard tasks (tested on 5 points)
Ours 0.8 5.6s - 0
MPC+IK 0.1 22.0s 0.2 0.5

Table 7: Comparison of our method v.s. MPC+IK on
pick-up tasks. pend is the goal position sampled from
the points on the ground. TTC is the average time to
completion. Each task performance is averaged on 10
real-world trials.

Then we design and use a simple yet effective
position feedback controller to set the current
EE position command pcmd

t = KT ptag, where
K = [−1.5,−1.5, 0.1]T is a gain vector for po-
sition control. In Figure 6 and Table 7, we com-
pare our method and the baseline (MPC+IK) in
several pick-up tasks by measuring the success
rate, average time to to completion (TTC), IK
failure rate, and self-collision rate for every set-
ting. We initialize the robot to the same default
configuration and before execution.

Analysis of Success and Failure Modes: Our method succeeds most of times on easy tasks without
visible performance drop in hard task. The failed trials of our method are largely due to the mismatch
between the actual cup position and the AprilTag position, which can be mitigated by using two
AprilTags and averaging their poses (details in the Supplementary). Since the visual estimation is not
the focus of this work, we infer that our method has higher precision and higher efficiency on pick-up
tasks than MPC+IK. MPC+IK succeeds in some of the easy tasks and fails due to IK singularity or
self-collision. In hard tasks, the major failure cause is self-collision given the cup is too close to the
body. Notice that the TTC of MPC+IK is also longer than our method because solving online IK and
operational space control more computationally demanding than joint position control (ours).

Open-loop Control from Demonstration: In this part, we analyze how agile walking is coupled
with dynamic arm movement. The robot is given a pre-defined end-effector trajectory to follow in
an open-loop manner while being commanded to walk at the same time. Results in Figure 7 show

7

https://maniploco.github.io

Fo
ot

 C
on

ta
ct

s
Bo

dy
 A

ng
le

(d

eg
)

Sn
ap

sh
ot

s

Figure 7: The arm follows a demonstration trajectory to pick up a cup while walking. The start position is
p = (0.5,−0.5,−1.2), at the right upper side of the robot and the end position is pend = (0.55,−0.9, 0.4),
on the left lower front side close to the ground. Ttraj = 2.5s. The robot initially stands on the ground and
then is commanded by a constant forward velocity vcmd

x = 0.35. Meanwhile the EE position command
changes. When EE position command is high, the quadruped starts to walk without significant tilting behavior
with a natural walking gait. As the EE position command moves below the torso, the quadruped starts to
pitch downwards, roll to the left and yaw slightly to the right to help the arm reach the goal. Videos are
at https://maniploco.github.io

agility and dynamic coordination of our legged manipulator on uneven grass terrain powered by our
whole-body control method.

4 Related Work
Legged Locomotion Traditional model-based control methods for legged robots have shown
success but often require controllers to be meticulously designed and many manual tunings [1, 2,
3, 4, 5, 31, 32, 33, 34, 35, 36, 6, 37]. The extra weight and movement of a robot arm on top of the
legged robot will make such design process more challenging. Recent advances in reinforcement
learning enable legged robots to traverse challenging terrains and adapt to changing dynamics
[38, 24, 22, 39, 40, 41, 42, 43, 44, 45, 46, 47, 17, 48, 49, 50]. However these works only focus on
the mobility part and few interactions with objects or the environment by manipulation are studied.

Mobile Manipulation Adding mobility to manipulation is studied in [51, 52, 53, 8, 54, 55, 10, 9,
56, 57, 58]. Advances have also been made in the field of biped humanoid [59, 60, 61, 62]. More
recently, Ma et al. [8] proposed using an MPC controller to track the desired end-effector position of
the arm mounted on a quadruped with a RL policy to maintain balance. However, the controllers for
legs (RL) and arm (model-based) are separate modules and no dynamic movements are demonstrated.
In [55], language models are used to guide a mobile robot to finish different tasks using the arm.
However, the manipulation and mobility are utilized in a decoupled step-by-step manner.

5 Discussion and Limitations
We proposed a hardware setup as well as an algorithm to learn whole-body control of a legged
robot with robotic arm. Our policy shows coordination between legs and arm while being able to
control them in a dynamic manner. The method is trained fully in simulation and then transferred
to the real-world using a learned adaptation strategy. We show the utility of our framework through
teleoperation, visual tracking and open-loop control across several real-world tasks.

Limitations This work focuses on the whole-body control of a high-DoF mobile manipulator.
Although we have shown preliminary results on object interaction (e.g. picking, pressing, erasing),
incorporating general-purpose object interaction (e.g. grasping occluded scenes and soft object
manipulation) into the our unified policy is a challenging open research direction. There are several
ways in which the current methodology could be extended, such as, learning vision-based policies
from the egocentric camera mounted on torso [63] and on the arm, climbing on the obstacle using
front legs to pick something up on the table where the arm alone cannot reach, and etc. We believe
this paper provides a first step towards several of such future directions.

8

https://maniploco.github.io

Acknowledgments

We would like to thank Chris Atkeson for high-quality feedback, and Kenny Shaw, Russell Mendonca,
Ellis Brown, Heng Yu, Unitree Robotics (Irving Chen, Yunguo Cui and Walter Wen) and staff at
CMU Tech Spark for help in real-world experiments, hardware design and assembly. This work is
supported in part by DARPA Machine Common Sense grant and ONR N00014-22-1-2096.

References

[1] H. Miura and I. Shimoyama. Dynamic walk of a biped. IJRR, 1984.

[2] M. H. Raibert. Hopping in legged systems—modeling and simulation for the two-dimensional
one-legged case. IEEE Transactions on Systems, Man, and Cybernetics, 1984.

[3] H. Geyer, A. Seyfarth, and R. Blickhan. Positive force feedback in bouncing gaits? Proceedings
of the Royal Society of London. Series B: Biological Sciences, 2003.

[4] K. Yin, K. Loken, and M. Van de Panne. Simbicon: Simple biped locomotion control. ACM
Transactions on Graphics, 2007.

[5] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle. A compliant hybrid zero dynamics
controller for stable, efficient and fast bipedal walking on mabel. IJRR, 2011.

[6] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie,
P. Fankhauser, M. Bloesch, et al. Anymal-a highly mobile and dynamic quadrupedal robot. In
IROS, 2016.

[7] L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human
environments. In ICRA, 2006.

[8] Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter. Combining learning-based locomotion
policy with model-based manipulation for legged mobile manipulators. RA-L, 2022.

[9] C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic, and M. Hutter.
Alma-articulated locomotion and manipulation for a torque-controllable robot. In ICRA, 2019.

[10] S. Zimmermann, R. Poranne, and S. Coros. Go fetch!-dynamic grasps using boston dynamics
spot with external robotic arm. In ICRA, 2021.

[11] N. Bernstein. The co-ordination and regulation of movements. The co-ordination and regulation
of movements, 1966.

[12] M. L. Latash. The bliss (not the problem) of motor abundance (not redundancy). Experimental
brain research, 217(1):1–5, 2012.

[13] M. Bruton and N. O’Dwyer. Synergies in coordination: a comprehensive overview of neural,
computational, and behavioral approaches. Journal of Neurophysiology, 120(6):2761–2774,
2018.

[14] B. Dynamics. Spot Arm. https://www.bostondynamics.com/.

[15] X. Wang. Unitree go1. https://www.unitree.com/products/go1/.

[16] S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch. Bi-manual manipulation and
attachment via sim-to-real reinforcement learning. arXiv preprint arXiv:2203.08277, 2022.

[17] Z. Fu, A. Kumar, J. Malik, and D. Pathak. Minimizing energy consumption leads to the
emergence of gaits in legged robots. In CoRL, 2021.

[18] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. RSS, 2022.

9

https://www.bostondynamics.com/
https://www.unitree.com/products/go1/

[19] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In CoRL, 2022.

[20] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[22] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid Motor Adaptation for Legged Robots.
In RSS, 2021.

[23] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae Kim, and P. Agrawal. Learning to
jump from pixels. In CoRL, 2021.

[24] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science Robotics, 2020.

[25] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science Robotics, Jan. 2022.

[26] L. Weihs, U. Jain, I.-J. Liu, J. Salvador, S. Lazebnik, A. Kembhavi, and A. Schwing. Bridging
the imitation gap by adaptive insubordination. NeurIPS, 2021.

[27] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
JMLR, 2016.

[28] H. Wang and A. Banerjee. Bregman alternating direction method of multipliers. NeurIPS, 2014.

[29] WidowX 250 robot arm 6DOF - X-Series robotic arm. https://www.trossenrobotics.

com/widowx-250-robot-arm-6dof.aspx.

[30] E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3400–3407. IEEE, May
2011.

[31] A. M. Johnson, T. Libby, E. Chang-Siu, M. Tomizuka, R. J. Full, and D. E. Koditschek. Tail
assisted dynamic self righting. In Adaptive Mobile Robotics. World Scientific, 2012.

[32] M. Khoramshahi, H. J. Bidgoly, S. Shafiee, A. Asaei, A. J. Ijspeert, and M. N. Ahmadabadi.
Piecewise linear spine for speed–energy efficiency trade-off in quadruped robots. Robotics and
Autonomous Systems, 2013.

[33] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle. Rapidly exponentially stabilizing
control lyapunov functions and hybrid zero dynamics. IEEE Transactions on Automatic Control,
2014.

[34] D. J. Hyun, J. Lee, S. Park, and S. Kim. Implementation of trot-to-gallop transition and
subsequent gallop on the mit cheetah i. IJRR, 2016.

[35] M. Barragan, N. Flowers, and A. M. Johnson. MiniRHex: A small, open-source, fully pro-
grammable walking hexapod. In RSS Workshop, 2018.

[36] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. Mit cheetah 3: Design
and control of a robust, dynamic quadruped robot. In IROS, 2018.

[37] C. S. Imai, M. Zhang, Y. Zhang, M. Kierebinski, R. Yang, Y. Qin, and X. Wang. Vision-guided
quadrupedal locomotion in the wild with multi-modal delay randomization. arXiv:2109.14549,
2021.

10

https://www.trossenrobotics.com/widowx-250-robot-arm-6dof.aspx
https://www.trossenrobotics.com/widowx-250-robot-arm-6dof.aspx

[38] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning
agile and dynamic motor skills for legged robots. Science Robotics, 2019.

[39] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement
learning for robust parameterized locomotion control of bipedal robots. In ICRA, 2021.

[40] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. In RSS, 2020.

[41] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In RSS, 2017.

[42] W. Yu, C. K. Liu, and G. Turk. Policy transfer with strategy optimization. In ICLR, 2018.

[43] W. Zhou, L. Pinto, and A. Gupta. Environment probing interaction policies. In ICLR, 2019.

[44] W. Yu, V. C. V. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In
IROS, 2019.

[45] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha. Learning fast adaptation with meta strategy
optimization. RA-L, 2020.

[46] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn, and J. Tan. Rapidly
adaptable legged robots via evolutionary meta-learning. In IROS, 2020.

[47] I. Clavera, A. Nagabandi, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning
to adapt in dynamic, real-world environments through meta-reinforcement learning. In ICLR,
2019.

[48] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In ICRA, 2022.

[49] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang. Learning vision-guided quadrupedal
locomotion end-to-end with cross-modal transformers. In ICLR, 2022.

[50] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak. Coupling vision and proprioception
for navigation of legged robots. In CVPR, 2022.

[51] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine. Fully
autonomous real-world reinforcement learning with applications to mobile manipulation. In
CoRL, 2022.

[52] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martı́n-Martı́n.
Error-aware imitation learning from teleoperation data for mobile manipulation. In CoRL, 2022.

[53] D. Honerkamp, T. Welschehold, and A. Valada. Learning kinematic feasibility for mobile
manipulation through deep reinforcement learning. RA-L, 2021.

[54] X. Ding and F. Yang. Study on hexapod robot manipulation using legs. Robotica, 34(2):
468–481, Feb. 2016.

[55] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,
K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,
Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,
N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, and M. Yan. Do as I
can, not as I say: Grounding language in robotic affordances. 2022.

[56] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Lever-
aging motion generation in reinforcement learning for mobile manipulation. arXiv preprint
arXiv:2008.07792, 2020.

11

[57] K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig. Catch the ball: Accurate high-speed
motions for mobile manipulators via inverse dynamics learning. In IROS, 2020.

[58] K. Blomqvist, M. Breyer, A. Cramariuc, J. Förster, M. Grinvald, F. Tschopp, J. J. Chung, L. Ott,
J. Nieto, and R. Siegwart. Go fetch: Mobile manipulation in unstructured environments. ICRA
Workshop, 2020.

[59] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion,
and R. Tedrake. Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. Autonomous robots, 2016.

[60] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization based full body control for
the atlas robot. In International Conference on Humanoid Robots, 2014.

[61] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade. Footstep planning for
the honda asimo humanoid. In ICRA, 2005.

[62] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, A. S. Donnan,
J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater, et al. Valkyrie: Nasa’s first bipedal humanoid
robot. Journal of Field Robotics, 2015.

[63] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on Robot Learning (CoRL), 2022.

[64] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and Gavriel State. Isaac gym: High performance GPU-Based physics
simulation for robot learning. Aug. 2021.

12

A Experiment Videos

We perform thorough real-world analysis of our framework and our custom-built legged manipulator.
We urge the reader to look at the compiled result videos at https://maniploco.github.io . As
we can see in the video, legs and arm function in coordination with each other where legs bend and
stretch to increase the reach of the arm as well as to attain stability.

B Regularized Online Adaptation Details

Algorithm 1 Regularized Online Adaptation

1: Randomly initialize privileged information encoder µ, adaptation module ϕ, unified policy π
2: Initialize with empty replay buffer D
3: for itr = 1, 2, . . . do
4: for i = 1, 2, . . . , Nenv do
5: s0, e0 ← envs[i].reset()
6: for t = 0, 1, . . . , T do
7: if itr mod H == 0 then
8: zϕt ← ϕ(st−10:t−1, at−11:t−2)

9: at ← π((st, at−1, z
ϕ
t))

10: else
11: zµt ← µ(et)
12: at ← π((st, at−1, z

µ
t))

13: end if
14: st+1, rt ← envs[i].step(at)
15: Store ((st, et), at, rt, (st+1, et+1), z

ϕ
t , z

µ
t) in D

16: end for
17: end for
18: if itr mod H == 0 then
19: Update θϕ by optimizing ||sg[zµt]− zϕt ||2
20: else
21: Update θπ, θµ by optimizing −J(θπ, θµ) + λ||zµt − sg[zϕt]||2, where J(θπ, θµ) is the
22: advantage mixing RL objective in Section 2.1 of the main paper
23: end if
24: Empty D
25: λ← Linear Curriculum(itr)
26: end for

We presented the details of Regularized Online Adaptation (Section 2.2 of the main paper) in
Algorithm 1. We set H to be 20. The regularization coefficient λ follows a linear curriculum which
starts at 0 and stops at 1: λ = min(max(itr−5000

5000 , 0), 1).

C Simulation Details

We obtained URDF files for the quadraped and the robot arm from Unitree and Interbotix separately.
We customized the URDF files to connect the two parts rigidly. Shown in Figure 8, we use Nvidia’s
IsaacGym [64] for parallel simulation. We use fractal noise to generate the terrain. The parameters
for the fractual noise are number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, frequency
= 10Hz, amplitude = 0.15m. We found that the generated rough terrain will enforce foot clearance
and replace the complex rewards that are needed if flat terrain is used for simulation [38].

We sample an EE position command by first sampling a spherical coordinate (l, p, y) from Table 2 of
the main paper. Then world coordinate of pend is obtained as T (S2C[(l, p, y)]) + (pbase

x , pbase
y , pbase

z),
where T is the linear transformation according to the base orientation, S2C[] is the operator to
transform spherical coordinates to Cartesian coordinates, and pbase is the base position. To encourage

13

https://maniploco.github.io

Figure 8: Customized simulation environment based on IsaacGym

smooth arm motion and whole-body coordination, we set pbase
z to be a constant (0.53) and row and

pitch in T to be 0, so EE position commands are z, row, pitch-independent of the base.

We simulate each episode for a maximum of 1000 steps and terminate the episode earlier if the height
of the robot drops below 0.28m, body roll angle exceeds 0.2 radians if EE position command if on
the left of the body base (pcmd

y > 0) , or is less than −0.2 radians if EE position command is on the
right of the body base (pcmd

y < 0), or the body pitch exceeds 0.2 radians if EE position command is
above body base (pcmd

p > 0), or is less than −0.2 radians if EE position command is below body base
(pcmd

p < 0). We do not early terminate if the arm self-collide and any body parts with the terrain, but
the EE command positions are sampled in a way that

The control frequency of the policy is 50Hz, and the simulation frequency is 200Hz. We
set the stiffness (Kp) for leg joints and arm joints to be 50 and 5 respectively and the
damping (Kd) to be 1 and 0.5 respectively. The default target joint positions for leg joints
are [−0.1, 0.8,−1.5, 0.1, 0.8,−1.5,−0.1, 0.8,−1.5, 0.1, 0.8,−1.5] and for arm joints are ze-
ros. The delta range of target joint positions for leg joints is 0.45 and for arm joints are
[2.1, 1.0, 1.0, 2.1, 1.7, 2.1].

D Training Details

The policy is a multi-layer perceptron which takes in the current state st ∈ R75, which is concatenated
with the environment extrinsics zt ∈ R20. The first hidden layer has 128 dimensions and after that
the network splits into 2 heads, where each has 2 hidden layers of 128 dimensions. The outputs of
two heads are concatenated, where the leg actions aleg

t ∈ R12 and arm actions aarm
t ∈ R6. We train

Table 8: Training Hyper-parameters
PPO clip range 0.2
Learning rate 2e-4

Reward discount factor 0.99
GAE λ 0.95

Number of environments 5000
Number of environment steps per training batch 40

Learning epochs per training batch 5
Number of mini-batches per training batch 4

Minimum policy std 0.2

14

0.0 0.2 0.4 0.6 0.8 1.0
Steps (billions) £109

0

5

10

15

20

E
pi

so
de

V
el

E
rr

or
(m

/s
)

Advantage Mixing (Ours)

No Advantage Mixing

0.0 0.2 0.4 0.6 0.8 1.0
Steps (billions) £109

5

10

15

20

25

E
pi

so
de

E
E

E
rr

or
(m

/s
)

Advantage Mixing (Ours)

No Advantage Mixing

Figure 9: Advantage mixing helps the unified policy to learn to walk and grasp at the same time. Without
Advantage Mixing, the unified policy fails to learn to walk where the Episode Vel Error (episodic sum of L1
error between velocity commands and current velocities) is constantly high. In this case, the unified policy stays
at local minima of only following EE commands.

for 10000 iterations / training batches, which are 2 billions of samples and 200k gradient updates.
We list the hyperparameters of PPO [21] in Table 8 of the Supplementary.

E Advantage Mixing Details

For a policy with diagonal Gaussian noise and a sampled transition batch D, the training objective
with respect to policy’s parameters θπ is

J(θπ) =
1

|D|
∑

(st,at)∈D

log π (at | st)A(st, at)

=
1

|D|
∑

(st,at)∈D

log
(
π(aarm

t | st)π(aleg
t | st)

) (
Amanip(st, at) +Aloco(st, at)

)
→ 1

|D|
∑

(st,at)∈D

log π(aarm
t | st)

(
Amanip + βAloco)+ log π(aleg

t | st)
(
βAmanip +Aloco)

In Figure 9 of the Supplementary, we plot the episodic velocity command following error (Episode
Vel Error) and EE comand following error (Episode EE Error) against number of steps during training.
Advantage mixing helps the unified policy to learn to walk and grasp at the same time. Without
Advantage Mixing, the unified policy fails to learn to walk where the Episode Vel Error (episodic
sum of L1 error between velocity commands and current velocities) is constantly high. In this case,
the unified policy stays at local minima of only following EE commands by not exploring in leg
action space, since the initial exploration phase in leg action space will destabilize the base which
harms manipulation tasks.

F Real-World Setup and Experiment Details

Table 9: Camera Parameters for Vision Tracking
Resolution 640 × 400
Frequency 10 Hz

Tag/Cam offset (-0.02, -0.03, 0.12)

The robot platform is comprised of a Unitree Go1 quadraped [15] with 12 actuatable DoFs, and a
robot arm which is the 6-DoF Interbotix WidowX 250s [29] with a parallel gripper. We mount the
arm on top of the quadruped. The RealSense D435 provides RGB visual information and is mounted
close to the gripper of WidowX. Both power of Go1 and WidowX (60 Watts) are provided by Go1’s
battery.

15

Figure 10: Vision-guided tracking by using the average pose of the two AprilTags as the target pose.

Ground Points (pend) Success
Rate ↑ TTC ↓ IK Failure

Rate ↓ Self-Collision
Rate ↓

Easy tasks (tested on 3 points)
Ours [

(0.62,−1.27,−1.11)
(0.57,−1.16, 0.55)
(0.58,−1.14, 1.78)

] 0.8 5s - 0
MPC+IK 0.3 17s 0.4 0.3

Hard tasks (tested on 5 point)
Ours

(0.72,−0.51, 0.34)
(0.55,−0.75,−0.43)
(0.56,−0.73, 0.5)
(0.45,−0.74, 1.80)
(0.45,−0.76,−1.8)

0.8 5.6s - 0

MPC+IK 0.1 22.0s 0.2 0.5

Table 10: Comparison of our method v.s. MPC+IK on pick-up tasks. pend is the goal position sampled from the
points on the ground. TTC is the average time to tompletion. All data are averaged on 10 real-world trials.

In real-world experiments, we directly deploy the unified policy with the adaptation module with
weights fixed onto the onboard computation of Go1, both modules operate at 50Hz. The inference of
policy and adaption module are done on Raspberry Pi 4. The software stack of the WidowX 250s
arm is setup on Nvidia TX2 by using the official codebase at https://github.com/Interbotix/
interbotix_ros_manipulators. UDP is used as the communication protocal between Pi and
TX2. EE gripper closing and opening are not a part of the policy.

In teleoperation experiments, the gripper action is directly controlled by a joystick controller. In
vision-guided tracking experiments, we use a scripted policy to control the gripper: when the gripper
position is close to the desired position specified by the AprilTag [30] for 1 second, the gripper closes;
otherwise, it keeps open.

We listed the camera parameters used in vision-guided tracking in Table 9 of the Supplementary.
The “Tag/Cam offset” describes what the desired translation of the tag should be viewed in the
camera frame when using the position controller to specify desired end-effector position in spherical
coordinate. Shown in Figure 10 of the Supplementary, we also performed additional experiments
on vision-guided tracking suggested by Reviewer bkQw by using two AprilTags and averaging their
pose to get the target pose. Video results are at here. We listed the positions of ground points for
visual-guided tracking tasks in Table 10. More results on hard tasks are at here.

16

https://github.com/Interbotix/interbotix_ros_manipulators
https://github.com/Interbotix/interbotix_ros_manipulators
https://maniploco.github.io/resources/visual-tracking/2tags.mp4
https://maniploco.github.io/resources/visual-tracking/hard-visual-tracking.mp4

	1 Introduction
	2 Method: A Unified Policy for Coordinated Manipulation and Locomotion
	2.1 Advantage Mixing for Policy Learning
	2.2 Regularized Online Adaptation for Sim-to-Real Transfer

	3 Experimental Results
	3.1 Robot System Setup
	3.2 Simulation Experiments
	3.3 Real-World Experiments

	4 Related Work
	5 Discussion and Limitations
	A Experiment Videos
	B Regularized Online Adaptation Details
	C Simulation Details
	D Training Details
	E Advantage Mixing Details
	F Real-World Setup and Experiment Details

