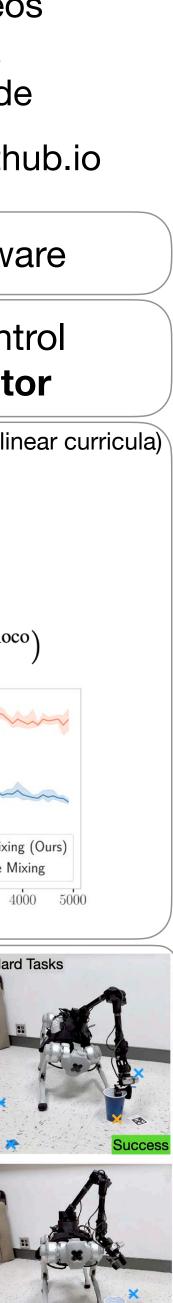


Deep Whole-Body Control Learning a Unified Policy for Manipulation and Locomotion

Zipeng Fu^{*} Xuxin Cheng^{*} Deepak Pathak



Videos & Code

https://maniploco.github.io

Motivation: whole-body >> modular, low-cost >> expensive hardware learning an **end-to-end** unified policy for whole-body control TL;DR: of a custom-built **low-cost** quadruped **mobile manipulator** (λ, β) follow simple linear curricula) **Regularized Online Adaptation** for Sim-to-Real Transfer $L(\theta_{\pi}, \theta_{\mu}, \theta_{\phi}) = -\frac{J(\theta_{\pi}, \theta_{\mu})}{\text{RL Loss}} + \frac{\lambda ||z^{\mu} - \text{sg}[z^{\phi}]||_{2}}{\text{Regularization}} + \frac{||\text{sg}[z^{\mu}] - z^{\phi}||_{2}}{\text{Adaptation}}$ Advantage Mixing for Policy Learning $J(\theta_{\pi}) = \frac{1}{|\mathcal{D}|} \sum_{(s_t, a_t) \in \mathcal{D}} \log \pi(a_t^{\operatorname{arm}} \mid s_t) \left(A^{\operatorname{manip}} + \beta A^{\operatorname{loco}} \right) + \log \pi(a_t^{\operatorname{leg}} \mid s_t) \left(\beta A^{\operatorname{manip}} + A^{\operatorname{loco}} \right)$ Realizability Gap £₁₅. EE Error \downarrow Vel Error Survival ↑ $||z^{\mu} - z^{\phi}||_2$ **Domain Randomization** $95.8 \pm 0.2 \mid 0.46 \pm 0.00$ 0.40 ± 0.00 0.31 ± 0.01 95.2 ± 0.2 RMA [22] 0.44 ± 0.00 0.26 ± 0.04 Regularized Online Adapt (Ours) **2e-4** ±0.00 **97.4** ± 0.1 **0.39** ± 0.01 0.21 ± 0.00 Ivantage Mixing (Ours No Advantage Mixing Expert w/ Reg. $97.8 \pm 0.2 \mid 0.40 \pm 0.01$ 0.21 ± 0.00 Expert w/o Reg. $98.3 \pm 0.2 \mid 0.39 \pm 0.00 \mid 0.21 \pm 0.00$ 3000 2000 Iteration Hardware Setup Comparison Ours 6DoF Arm Onboard Compute a Go1 Modula Quadruped Baseline Spot with Arm Anymal B + Kinova (MPC+IK) OUTS (Go1 + WidowX 250s) Bulky (~40kg) • > \$100K • \$6.3K hardware cost Fully onboard compute + power • No low-level control APIs Expensive

